污水流量計生產(chǎn)廠(chǎng)家的抗干擾措施及其效果分析
點(diǎn)擊次數:1750 發(fā)布時(shí)間:2020-08-08 13:09:57
摘要:為了抑制和排除污水流量計生產(chǎn)廠(chǎng)家測量過(guò)程中的干擾,提高信噪比,提高測量的精確度和穩定性,討論了污水流量計生產(chǎn)廠(chǎng)家幾類(lèi)干擾噪聲產(chǎn)生的物理機理和特征,簡(jiǎn)要闡述了污水流量計生產(chǎn)廠(chǎng)家的幾種硬件和軟件方面的抗干擾技術(shù)。硬件方面設計了高精度低功耗的矩形波激磁電路,并從激磁電路中引出A/D轉換器的參考電壓,提高了A/ D轉換結果的抗干擾能力。軟件方面主要采用“計算斜率法”和“正負差值法”相結合的方法消除零點(diǎn)漂移。實(shí)驗表明,這些方法在智能污水流量計生產(chǎn)廠(chǎng)家的測量過(guò)程中取得了明顯的效果。
污水流量計生產(chǎn)廠(chǎng)家是利用法拉第電磁感應定律來(lái)測量導電液體的體積流量的儀表,具有很多突出的優(yōu)點(diǎn),例如:無(wú)可動(dòng)部件,不會(huì )產(chǎn)生壓力損失和堵塞管道;測量導電介質(zhì)的流量,不受溫度、黏度、密度、壓力、雷諾數以及在一定范圍內電導率變化的影響;測量原理為線(xiàn)性,精度高,測量范圍大;耐腐蝕性好并且可測量正反流速等等。但在實(shí)際測量中,干擾信號與有用的信號混在一起,它們不僅成分復雜,而且有時(shí)候干擾信號還會(huì )比流量信號大。在這種情況下怎樣抑制和排除這些干擾,提高信噪比,提高測量的精確度和穩定性就成了研制和使用污水流量計生產(chǎn)廠(chǎng)家的一個(gè)技術(shù)關(guān)鍵。
以往的污水流量計生產(chǎn)廠(chǎng)家的設計很多還有待改進(jìn),例如:激磁電路基本采用模擬式恒流源,功耗大的同時(shí)也引入了干擾,并且精確度不高;轉換器大多使用8位或16位的單片機,較為復雜的算法就難以實(shí)現或響應時(shí)間過(guò)慢;抗干擾主要集中在硬件電路的設計等。本系統采用32位ARM處理器,提高數據處理能力和算法復雜度;并設計了低功耗的激磁電路,同時(shí)利用反饋原理消除激勵電流不穩定對A/D轉換結果的影響并在軟件算法和硬件電路方面提出了有效的消除零點(diǎn)漂移以及其他干擾的措施,使污水流量計生產(chǎn)廠(chǎng)家測量精度更為提高。
1、污水流量計生產(chǎn)廠(chǎng)家的測量原理
由法拉第電磁感應定律可知,當導體在磁場(chǎng)中做切割磁力線(xiàn)運動(dòng)時(shí),在導體兩端就產(chǎn)生感應電動(dòng)勢。設在磁場(chǎng)強度為B的均勻磁場(chǎng)中放置一個(gè)垂直于磁場(chǎng)方向的直徑為D的管道,當導電液體在管道中流動(dòng)時(shí),導電液體切割磁力線(xiàn),就會(huì )在和磁場(chǎng)及流動(dòng)方向垂直的方向產(chǎn)生感應電動(dòng)勢。如果在管道截面上垂直于磁場(chǎng)的直徑兩端安裝一對電極,兩電極之間就會(huì )產(chǎn)生感應電動(dòng)勢。如管道內流速v為軸對稱(chēng)分布,不考慮感應電動(dòng)勢的正負可得:
其中,B為磁感應強度,A為磁通量變化面積,D為導體長(cháng)度,dl為被測介質(zhì)運動(dòng)的距離,v為被測介質(zhì)運動(dòng)的速度,U為感應電動(dòng)勢。
所測液體的體積流量為:
式(1)說(shuō)明,導體在磁場(chǎng)內作切割磁力線(xiàn)運動(dòng),導體兩端產(chǎn)生的感應電動(dòng)勢的大小與磁感應強度B成正比,與導體的長(cháng)度D成正比,與導體運動(dòng)的速度v成正比。由式(2)可知液體的體積流量與感應電動(dòng)勢成正比,這就是污水流量計生產(chǎn)廠(chǎng)家的設計原理。
2、污水流量計生產(chǎn)廠(chǎng)家中的干擾源分析
傳感器提供給轉換器的流量信號是電極間的電位差,即一種電壓信號。在實(shí)際測量中,由于電磁感應、靜電感應以及電化學(xué)電勢等原因,電極上所得到的電壓不僅僅是與流速成比例的電動(dòng)勢,也包含各種各樣的干擾成分在內。
首先污水流量計生產(chǎn)廠(chǎng)家工作現場(chǎng)存在大量的工頻信號,耦合在激磁回路、電極、前端放大器的工頻干擾噪聲對流量測量的準確性造成極大的影響。其次,在低頻矩形波激磁方式下,其干擾主要表現為由激磁電流突變產(chǎn)生的微分干擾信號,隨著(zhù)電流的穩定,干擾信號隨之消失;另外,由于電磁流量傳感器的“變壓器效應”,會(huì )產(chǎn)生相位上與流量信號相差90°的正交干擾信號;此外,由于電磁屏蔽缺陷,接地不良,雜散電容等引起返回電流不平衡產(chǎn)生共模干擾,它可能導致電路某些參考電位變化,是造成污水流量計生產(chǎn)廠(chǎng)家零點(diǎn)漂移的原因之一,同時(shí)產(chǎn)生高的輻射電場(chǎng)使電路的電磁兼容性惡化;串模干擾是由于印刷電路板設計電磁兼容性考慮不足造成的信號質(zhì)量下降,特別是高速走線(xiàn)和模擬電路易受到影響;還有就是電化學(xué)極化電動(dòng)勢干擾,它是被測液體中電解質(zhì)在感應電場(chǎng)作用下在電極表面極化產(chǎn)生,是污水流量計生產(chǎn)廠(chǎng)家零點(diǎn)漂移的主要原因。
3、污水流量計生產(chǎn)廠(chǎng)家的抗干擾措施及其效果分析
3.1高精度的激磁電路的設計
該系統采用6.25Hz的雙極性低頻矩形波激磁,這種激磁方式不僅可以克服直流激磁產(chǎn)生的電極極化效應,也可以克服工頻正弦波激磁產(chǎn)生的正交干擾影響。
以往的激磁電路的設計都是采用恒流源和可控開(kāi)關(guān)電路組成。恒流源是由電壓基準、比較放大、控制調整和采樣等部分組成的直流負反饋自動(dòng)調節系統,常用的激磁電路就是用串聯(lián)調整型恒流電源盒控制開(kāi)關(guān)組成的,如圖1。其中Vref是參考電壓,Rs是采樣電阻,Is為流過(guò)Rs的電流,就是所需的恒流,RL為電磁流量傳感器線(xiàn)圈,K1、K2、K3、K4為可控開(kāi)關(guān),以達到使線(xiàn)圈RL中流經(jīng)正負交換的電流,對傳感器激磁。
由理想運算放大器“虛短”原理可知:
由此可知,要想獲得一個(gè)穩定的輸出電流Is,首先,必須要提供一個(gè)高精度的基準電壓和高精度采樣電阻。由于運放在調整控制過(guò)程中的作用,運放的增益直接影響輸出電流的精度,高增益和低漂移的運放是必要的選擇。由于采樣電阻與負載串連,流過(guò)的電流通常比較大,因此局部溫度也會(huì )隨之上升,導致元器件溫度上升,恒流源的溫度穩定性變壞,采樣電阻Rs隨溫度或其他環(huán)境參數的變化而改變,勢必影響Is的精度。其次,恒流電源的輸出電流全部流過(guò)調整管,因此調整管上的功耗也很大,必須選擇大功率的晶體管,然而大功率晶體管需要較大的基極驅動(dòng)電流,以滿(mǎn)足對運放有較高驅動(dòng)能力的要求。再次,雙極型三極管的漏電流和電流放大系數對溫度比較敏感,溫度穩定性較差。還有,電壓電流變換器使用的負反饋閉環(huán)控制,電流穩定度與放大器放大倍數有直接關(guān)系,在大功率電源里基本上是倒數關(guān)系。運放的溫度漂移和失調對電路的精度和溫度穩定性有很大的影響。
為此,設計了一個(gè)新型的激磁電路,并將激勵電流反饋到A/D轉換器,以消除激勵電流不穩定對A/D轉換結果的影響,如圖2。
其中+24V是由220V的交流電通過(guò)變壓、整流、濾波之后,輸入可調集成穩壓器LM317,通過(guò)高精度的滑動(dòng)變阻器調節而得到的恒壓源。LM317保證1.5A輸出電流,典型線(xiàn)性調整率0.01%,典型負載調整率0.1%,80dB紋波抑制比,輸出短路保護,過(guò)流、過(guò)熱保護,調整管安全工作區保護。系統的微控制器采用ARM7芯片STR710,通過(guò)它的I/O端口控制圖2中的P2.8和P2.9,ARM7芯片STR710進(jìn)行控制,使端口P2輸出正負24V交變的矩形波,從而對傳感器激磁。另外,Vref(+)接該系統A/D轉換器的參考輸入端VREF(+)。
整個(gè)電路的工作過(guò)程為:當P2.9為高電平時(shí),Q1、Q2、Q3、Q4導通,此時(shí)Q5的基極電流為零,Q5截止,此時(shí)P2的端口2輸出+24V的電壓。此時(shí)P2.8為低電平,Q6、Q7、Q8、Q9,此時(shí)有電流流經(jīng)Q10基極,并使其基極和發(fā)射級導通,Q10的功能相當于一個(gè)二極管的作用,此時(shí)P1端口沒(méi)有電壓輸出。那么,A/D轉換器的參考輸入端Vref(+)為:
其中,Vp2是P2端口輸出電壓幅值的絕對值,此處應該是+24V。整個(gè)電路是對稱(chēng)的,且R15=R20,當P2.9為低電平,P2.8為高電平時(shí),P2的端口2無(wú)電壓輸出,端口1輸出+24V的電壓,Vref(+)值不變,如此周而復始輸出頻率為6.25Hz的的雙極性矩形波。用Multisim仿真結果如圖3所示。
此外,把Vref(+)作為A/D轉換器的參考輸入,可以大大提高系統的溫度穩定性。A/D轉換的結果可表示為:
其中,Vin為經(jīng)放大、濾波處理過(guò)的電壓信號,也是A/D轉換器的輸入信號,Vout為傳感器輸出的原始流量信號,K0為信號放大倍數。
由公式(1)可知:
通電螺線(xiàn)管線(xiàn)圈產(chǎn)生的磁場(chǎng)為:
其中,μ0為真空磁導率,N為傳感器線(xiàn)圈匝數,I為流過(guò)線(xiàn)圈的電流,l為線(xiàn)圈的長(cháng)度。
由圖2可知:
把式(7)、(8)、(9)帶入式(6)可得:
由式(11)、(12)可知在保證R21精度的前提下,A/D轉換的結果只與液體的流速有關(guān),不受電磁流量傳感器線(xiàn)圈電阻變化的影響。該電路通過(guò)MCU控制三極管的通斷得到激磁信號,三極管的為電流控制元件,該電路實(shí)現了小電流控制大電壓,三極管的功耗低,電路的響應速度快,溫度穩定性好,抗干擾能力強,對污水流量計生產(chǎn)廠(chǎng)家整體精度的提高起到了決定性的作用。
3.2微分干擾和工頻干擾的消除
信號中往往同時(shí)存在微分干擾和工頻干擾信號,在信號處理電路中的低通濾波往往很難將工頻干擾完全濾出。本系統采用了同步采樣和工頻補償技術(shù),以抑制流量信號電勢中混入工頻干擾和工頻電源頻率波動(dòng)產(chǎn)生工頻干擾,并有效去除微分干擾。同步采樣技術(shù),采樣開(kāi)始時(shí)間滯后激磁信號1/4個(gè)周期,其采樣脈寬為工頻周期的偶數倍,消除微分干擾的同時(shí)使流量信號電勢中工頻干擾平均值等于零,以消除工頻干擾的影響;工頻電源的頻率波動(dòng)補償是保證頻率的動(dòng)態(tài)波動(dòng)中,激磁電源和采樣脈沖得以同步調整,真正實(shí)現同步采樣技術(shù)和同步激磁技術(shù),同步A/D轉換,降低了微分干擾和工頻干擾的影響。
3.3零點(diǎn)漂移消除
所謂零點(diǎn)漂移,就是當傳感器的輸入信號為零時(shí),放大器的輸出并不是零。零點(diǎn)漂移的信號會(huì )在各級放大的電路間傳遞,經(jīng)過(guò)多級放大后,在輸出端成為較大的信號,由于傳感器輸出的有用信號較弱,零點(diǎn)漂移就可能將有用信號淹沒(méi),使電路無(wú)法正常工作。零點(diǎn)漂移可分為基線(xiàn)零點(diǎn)漂移和斜率零點(diǎn)漂移。對于零點(diǎn)漂移的抑制,該系統采用軟硬件相結合的措施。硬件電路方面,采用三運放的差動(dòng)電路輸入,實(shí)現對大內阻的微弱信號采集,并有效抑制了共模信號的引入。一級放大電路之后采用隔直電容,濾除基線(xiàn)零點(diǎn)漂移,防止直流信號過(guò)大,超出A/D轉換的輸入范圍。
有時(shí)硬件的方法是不可能完全滿(mǎn)足系統的要求的,必須結合軟件的方法才能更好地達到系統的要求,也就是現在所說(shuō)的軟件即是虛擬硬件。結合硬件采用軟件的方法簡(jiǎn)單易行,可以很好消除采集數據中的零點(diǎn)漂移,并且其成本比用硬件的方法低,改進(jìn)軟件的算法可以方便實(shí)現對系統的改進(jìn)。對于該系統的零點(diǎn)漂移,采用“計算斜率法”和“正負差值法”相結合的方法可以很有效地消除基線(xiàn)零點(diǎn)漂移和斜率零點(diǎn)漂移對污水流量計生產(chǎn)廠(chǎng)家精度的影響。
圖4為經(jīng)過(guò)信號處理和同步采樣后的信號,同時(shí)存在基線(xiàn)零點(diǎn)漂移和斜率零點(diǎn)漂移。斜率零點(diǎn)漂移則多見(jiàn)于積分系統,隨著(zhù)時(shí)間的推移,積分器的零點(diǎn)可能會(huì )出現隨時(shí)間累加漂移。此外,外界的環(huán)境溫度的變化也是斜率零點(diǎn)漂移產(chǎn)生的重要原因。
鑒于斜率零點(diǎn)漂移產(chǎn)生的機理,可以在標定的時(shí)候確定零點(diǎn)漂移的斜率K。也就是在管道液體靜止不動(dòng)流量為零的時(shí)候對輸出信號進(jìn)行采樣,設從時(shí)間t1進(jìn)行采樣,采樣歷時(shí)Δt,經(jīng)過(guò)一段時(shí)間后又從t2開(kāi)始采樣,歷時(shí)Δt后采樣結束。分別得到兩組離散的信號x1到xn和x1到xn,分別除去最大值、最小值后對剩下(n-2)個(gè)值進(jìn)行平均,得:
那么斜率零點(diǎn)漂移的斜率為:
對于基線(xiàn)零點(diǎn)漂移,“正負差值法”是比較有效便捷的選擇,它不需要直接消除信號中的基線(xiàn)零點(diǎn)漂移,而是通過(guò)算法上去掉基線(xiàn)零點(diǎn)漂移對測量結果的影響。該系統中,激磁信號的頻率為6.25Hz,由于所測量的液體流速不會(huì )有明顯的突變,所以在信號的一個(gè)周期0.16s內,可以采用一個(gè)波峰減去波谷的均值來(lái)表示此時(shí)的流量信號,也即如圖3中|y4-y1|其中y4是從nT+T/4到nT+T/2采樣結果的算術(shù)平均值,y1是從到(n+1)T進(jìn)行采樣結果的算術(shù)平均值。但是由于斜率零點(diǎn)漂移的存在,會(huì )出現如圖3中|y3-y2|的誤差,所以需要利用式(15)的結果對該誤差進(jìn)行修正,修正后的結果也就是此時(shí)管道中液體感應出的電動(dòng)勢為:
對于式(16)結果,去除了工頻干擾、微分干擾、零點(diǎn)漂移的影響,大大提高了污水流量計生產(chǎn)廠(chǎng)家的測量精度。
3.4其他去除干擾的措施
對于由電磁流量傳感器的“變壓器效應”所產(chǎn)生的正交干擾,采用“變送器調零法”來(lái)消除,這個(gè)方法既方便又實(shí)用。
軟件設計方面,采用了數字濾波技術(shù),它能完成模擬濾波不能完成的功能,很容易剔出脈沖干擾,消除數字電路毛刺,提高A/D轉換的抗工頻干擾能力以及輸入微處理器數字的可靠性。此外,還采用了掉電保護技術(shù),軟件指令冗余措施,軟件陷阱抗干擾方法以及看門(mén)狗技術(shù),這些措施的采用有效地排除了智能污水流量計生產(chǎn)廠(chǎng)家微處理器失控。
在PCB電路板制作上,采用數字地與模擬地分開(kāi)走線(xiàn)并加粗,最后用0歐電阻單點(diǎn)相連。數字電源與模擬電源也分開(kāi)供電,合理加裝了去藕電容,并協(xié)調好不同類(lèi)型IC的點(diǎn)評匹配。數字信號和模擬信號分開(kāi)走線(xiàn),有效防止了并行走線(xiàn)產(chǎn)生寄生電容和共生電容。選擇高性能的抗干擾芯片,這是抗干擾技術(shù)重要環(huán)節。
在污水流量計生產(chǎn)廠(chǎng)家的安裝方面,使傳感器的外殼應接地,并且將流量調節閥門(mén)放在流量計的下游,垂直安裝(若水平安裝的流量計應保證上游10倍直徑,下游5倍直徑的直管段),這樣達到整流的目的,從而減小了流速分布不均對測量精度的影響。減短信號傳送電纜,否則由電纜分布電容引起的負載效應就會(huì )增大測量誤差,也增加了信號受到干擾的可能。
4、結束語(yǔ)
智能污水流量計生產(chǎn)廠(chǎng)家多種抗干擾技術(shù)的采用,大大抑制和消除了干擾信號對有用信號的影響,增強了污水流量計生產(chǎn)廠(chǎng)家的抗干擾能力,經(jīng)污水流量計生產(chǎn)廠(chǎng)家制作樣機反復實(shí)驗證明,測量精度可達到0.5%,提高了以往測量的精度和可靠性。
關(guān)于污水流量計的安裝規范與安裝圖
關(guān)于污水流量計的工作原理及組成部分介紹
污水流量計的適用范圍特點(diǎn)及如何選型
污水流量計公稱(chēng)通徑與流量范圍對照圖
污水流量計電極與襯里材料選型對照表
污水流量計的外形和安裝尺寸圖示與對照表
污水流量計的故障檢查與分析匯總
分體式與一體式污水流量計如何接線(xiàn)圖解
污水流量計顯示波動(dòng)大的原因分析
關(guān)于城市生活污水與工業(yè)廢水的流量設計分析
用于測量各類(lèi)污水處理排水流量計種類(lèi)以及選型
智能污水處理排水流量計優(yōu)缺點(diǎn)及產(chǎn)生誤差的原因分析
智能污水管道排水計量表好與壞有哪7個(gè)重要的檢查要領(lǐng)
影響dn250污水流量計精度的因素有哪三個(gè)方面
明渠分體式污水流量計在供水流量測量中的縮頸變徑運用分析
dn25污水管道流量計在自控儀表系統中的防干擾策略
如何測量dn25污水流量計電極與所測液體介質(zhì)接觸電阻值
影響漿液型dn25污水流量計廠(chǎng)家測量因素及解決辦法
dn25污水專(zhuān)用流量計的特點(diǎn)及與自來(lái)水電磁水表的區別
dn250污水流量計的結構原理與安裝注意事項及運行維護
一體型管道污水流量計在熱鉀堿溶液測量中的安裝與使用
造紙廠(chǎng)污水流量計的內襯如何選擇及對于內襯的加工工藝介紹
造紙廠(chǎng)污水排放計量表廠(chǎng)家指導分體式傳感器檢定校準方法
造紙廠(chǎng)污水排放計量表監測數據有效性判別技術(shù)研究
關(guān)于國產(chǎn)紡織污水流量計價(jià)格產(chǎn)業(yè)如何提升研發(fā)短板的思路
紡織污水流量計價(jià)格在安裝與使用過(guò)程中不當操作導致的
正確處理紡織污水流量計測量過(guò)程中液體均勻混合問(wèn)
dn65污水流量計勵磁系統硬件研制
智能型電磁污水流量計和超聲流量計在污水處理廠(chǎng)的應用
關(guān)于幾種常用的生活污水流量計價(jià)格的性能比較
污水流量計生產(chǎn)廠(chǎng)家是利用法拉第電磁感應定律來(lái)測量導電液體的體積流量的儀表,具有很多突出的優(yōu)點(diǎn),例如:無(wú)可動(dòng)部件,不會(huì )產(chǎn)生壓力損失和堵塞管道;測量導電介質(zhì)的流量,不受溫度、黏度、密度、壓力、雷諾數以及在一定范圍內電導率變化的影響;測量原理為線(xiàn)性,精度高,測量范圍大;耐腐蝕性好并且可測量正反流速等等。但在實(shí)際測量中,干擾信號與有用的信號混在一起,它們不僅成分復雜,而且有時(shí)候干擾信號還會(huì )比流量信號大。在這種情況下怎樣抑制和排除這些干擾,提高信噪比,提高測量的精確度和穩定性就成了研制和使用污水流量計生產(chǎn)廠(chǎng)家的一個(gè)技術(shù)關(guān)鍵。
以往的污水流量計生產(chǎn)廠(chǎng)家的設計很多還有待改進(jìn),例如:激磁電路基本采用模擬式恒流源,功耗大的同時(shí)也引入了干擾,并且精確度不高;轉換器大多使用8位或16位的單片機,較為復雜的算法就難以實(shí)現或響應時(shí)間過(guò)慢;抗干擾主要集中在硬件電路的設計等。本系統采用32位ARM處理器,提高數據處理能力和算法復雜度;并設計了低功耗的激磁電路,同時(shí)利用反饋原理消除激勵電流不穩定對A/D轉換結果的影響并在軟件算法和硬件電路方面提出了有效的消除零點(diǎn)漂移以及其他干擾的措施,使污水流量計生產(chǎn)廠(chǎng)家測量精度更為提高。
1、污水流量計生產(chǎn)廠(chǎng)家的測量原理
由法拉第電磁感應定律可知,當導體在磁場(chǎng)中做切割磁力線(xiàn)運動(dòng)時(shí),在導體兩端就產(chǎn)生感應電動(dòng)勢。設在磁場(chǎng)強度為B的均勻磁場(chǎng)中放置一個(gè)垂直于磁場(chǎng)方向的直徑為D的管道,當導電液體在管道中流動(dòng)時(shí),導電液體切割磁力線(xiàn),就會(huì )在和磁場(chǎng)及流動(dòng)方向垂直的方向產(chǎn)生感應電動(dòng)勢。如果在管道截面上垂直于磁場(chǎng)的直徑兩端安裝一對電極,兩電極之間就會(huì )產(chǎn)生感應電動(dòng)勢。如管道內流速v為軸對稱(chēng)分布,不考慮感應電動(dòng)勢的正負可得:
其中,B為磁感應強度,A為磁通量變化面積,D為導體長(cháng)度,dl為被測介質(zhì)運動(dòng)的距離,v為被測介質(zhì)運動(dòng)的速度,U為感應電動(dòng)勢。
所測液體的體積流量為:
式(1)說(shuō)明,導體在磁場(chǎng)內作切割磁力線(xiàn)運動(dòng),導體兩端產(chǎn)生的感應電動(dòng)勢的大小與磁感應強度B成正比,與導體的長(cháng)度D成正比,與導體運動(dòng)的速度v成正比。由式(2)可知液體的體積流量與感應電動(dòng)勢成正比,這就是污水流量計生產(chǎn)廠(chǎng)家的設計原理。
2、污水流量計生產(chǎn)廠(chǎng)家中的干擾源分析
傳感器提供給轉換器的流量信號是電極間的電位差,即一種電壓信號。在實(shí)際測量中,由于電磁感應、靜電感應以及電化學(xué)電勢等原因,電極上所得到的電壓不僅僅是與流速成比例的電動(dòng)勢,也包含各種各樣的干擾成分在內。
首先污水流量計生產(chǎn)廠(chǎng)家工作現場(chǎng)存在大量的工頻信號,耦合在激磁回路、電極、前端放大器的工頻干擾噪聲對流量測量的準確性造成極大的影響。其次,在低頻矩形波激磁方式下,其干擾主要表現為由激磁電流突變產(chǎn)生的微分干擾信號,隨著(zhù)電流的穩定,干擾信號隨之消失;另外,由于電磁流量傳感器的“變壓器效應”,會(huì )產(chǎn)生相位上與流量信號相差90°的正交干擾信號;此外,由于電磁屏蔽缺陷,接地不良,雜散電容等引起返回電流不平衡產(chǎn)生共模干擾,它可能導致電路某些參考電位變化,是造成污水流量計生產(chǎn)廠(chǎng)家零點(diǎn)漂移的原因之一,同時(shí)產(chǎn)生高的輻射電場(chǎng)使電路的電磁兼容性惡化;串模干擾是由于印刷電路板設計電磁兼容性考慮不足造成的信號質(zhì)量下降,特別是高速走線(xiàn)和模擬電路易受到影響;還有就是電化學(xué)極化電動(dòng)勢干擾,它是被測液體中電解質(zhì)在感應電場(chǎng)作用下在電極表面極化產(chǎn)生,是污水流量計生產(chǎn)廠(chǎng)家零點(diǎn)漂移的主要原因。
3、污水流量計生產(chǎn)廠(chǎng)家的抗干擾措施及其效果分析
3.1高精度的激磁電路的設計
該系統采用6.25Hz的雙極性低頻矩形波激磁,這種激磁方式不僅可以克服直流激磁產(chǎn)生的電極極化效應,也可以克服工頻正弦波激磁產(chǎn)生的正交干擾影響。
以往的激磁電路的設計都是采用恒流源和可控開(kāi)關(guān)電路組成。恒流源是由電壓基準、比較放大、控制調整和采樣等部分組成的直流負反饋自動(dòng)調節系統,常用的激磁電路就是用串聯(lián)調整型恒流電源盒控制開(kāi)關(guān)組成的,如圖1。其中Vref是參考電壓,Rs是采樣電阻,Is為流過(guò)Rs的電流,就是所需的恒流,RL為電磁流量傳感器線(xiàn)圈,K1、K2、K3、K4為可控開(kāi)關(guān),以達到使線(xiàn)圈RL中流經(jīng)正負交換的電流,對傳感器激磁。
由理想運算放大器“虛短”原理可知:
由此可知,要想獲得一個(gè)穩定的輸出電流Is,首先,必須要提供一個(gè)高精度的基準電壓和高精度采樣電阻。由于運放在調整控制過(guò)程中的作用,運放的增益直接影響輸出電流的精度,高增益和低漂移的運放是必要的選擇。由于采樣電阻與負載串連,流過(guò)的電流通常比較大,因此局部溫度也會(huì )隨之上升,導致元器件溫度上升,恒流源的溫度穩定性變壞,采樣電阻Rs隨溫度或其他環(huán)境參數的變化而改變,勢必影響Is的精度。其次,恒流電源的輸出電流全部流過(guò)調整管,因此調整管上的功耗也很大,必須選擇大功率的晶體管,然而大功率晶體管需要較大的基極驅動(dòng)電流,以滿(mǎn)足對運放有較高驅動(dòng)能力的要求。再次,雙極型三極管的漏電流和電流放大系數對溫度比較敏感,溫度穩定性較差。還有,電壓電流變換器使用的負反饋閉環(huán)控制,電流穩定度與放大器放大倍數有直接關(guān)系,在大功率電源里基本上是倒數關(guān)系。運放的溫度漂移和失調對電路的精度和溫度穩定性有很大的影響。
為此,設計了一個(gè)新型的激磁電路,并將激勵電流反饋到A/D轉換器,以消除激勵電流不穩定對A/D轉換結果的影響,如圖2。
其中+24V是由220V的交流電通過(guò)變壓、整流、濾波之后,輸入可調集成穩壓器LM317,通過(guò)高精度的滑動(dòng)變阻器調節而得到的恒壓源。LM317保證1.5A輸出電流,典型線(xiàn)性調整率0.01%,典型負載調整率0.1%,80dB紋波抑制比,輸出短路保護,過(guò)流、過(guò)熱保護,調整管安全工作區保護。系統的微控制器采用ARM7芯片STR710,通過(guò)它的I/O端口控制圖2中的P2.8和P2.9,ARM7芯片STR710進(jìn)行控制,使端口P2輸出正負24V交變的矩形波,從而對傳感器激磁。另外,Vref(+)接該系統A/D轉換器的參考輸入端VREF(+)。
整個(gè)電路的工作過(guò)程為:當P2.9為高電平時(shí),Q1、Q2、Q3、Q4導通,此時(shí)Q5的基極電流為零,Q5截止,此時(shí)P2的端口2輸出+24V的電壓。此時(shí)P2.8為低電平,Q6、Q7、Q8、Q9,此時(shí)有電流流經(jīng)Q10基極,并使其基極和發(fā)射級導通,Q10的功能相當于一個(gè)二極管的作用,此時(shí)P1端口沒(méi)有電壓輸出。那么,A/D轉換器的參考輸入端Vref(+)為:
其中,Vp2是P2端口輸出電壓幅值的絕對值,此處應該是+24V。整個(gè)電路是對稱(chēng)的,且R15=R20,當P2.9為低電平,P2.8為高電平時(shí),P2的端口2無(wú)電壓輸出,端口1輸出+24V的電壓,Vref(+)值不變,如此周而復始輸出頻率為6.25Hz的的雙極性矩形波。用Multisim仿真結果如圖3所示。
此外,把Vref(+)作為A/D轉換器的參考輸入,可以大大提高系統的溫度穩定性。A/D轉換的結果可表示為:
其中,Vin為經(jīng)放大、濾波處理過(guò)的電壓信號,也是A/D轉換器的輸入信號,Vout為傳感器輸出的原始流量信號,K0為信號放大倍數。
由公式(1)可知:
通電螺線(xiàn)管線(xiàn)圈產(chǎn)生的磁場(chǎng)為:
其中,μ0為真空磁導率,N為傳感器線(xiàn)圈匝數,I為流過(guò)線(xiàn)圈的電流,l為線(xiàn)圈的長(cháng)度。
由圖2可知:
把式(7)、(8)、(9)帶入式(6)可得:
由式(11)、(12)可知在保證R21精度的前提下,A/D轉換的結果只與液體的流速有關(guān),不受電磁流量傳感器線(xiàn)圈電阻變化的影響。該電路通過(guò)MCU控制三極管的通斷得到激磁信號,三極管的為電流控制元件,該電路實(shí)現了小電流控制大電壓,三極管的功耗低,電路的響應速度快,溫度穩定性好,抗干擾能力強,對污水流量計生產(chǎn)廠(chǎng)家整體精度的提高起到了決定性的作用。
3.2微分干擾和工頻干擾的消除
信號中往往同時(shí)存在微分干擾和工頻干擾信號,在信號處理電路中的低通濾波往往很難將工頻干擾完全濾出。本系統采用了同步采樣和工頻補償技術(shù),以抑制流量信號電勢中混入工頻干擾和工頻電源頻率波動(dòng)產(chǎn)生工頻干擾,并有效去除微分干擾。同步采樣技術(shù),采樣開(kāi)始時(shí)間滯后激磁信號1/4個(gè)周期,其采樣脈寬為工頻周期的偶數倍,消除微分干擾的同時(shí)使流量信號電勢中工頻干擾平均值等于零,以消除工頻干擾的影響;工頻電源的頻率波動(dòng)補償是保證頻率的動(dòng)態(tài)波動(dòng)中,激磁電源和采樣脈沖得以同步調整,真正實(shí)現同步采樣技術(shù)和同步激磁技術(shù),同步A/D轉換,降低了微分干擾和工頻干擾的影響。
3.3零點(diǎn)漂移消除
所謂零點(diǎn)漂移,就是當傳感器的輸入信號為零時(shí),放大器的輸出并不是零。零點(diǎn)漂移的信號會(huì )在各級放大的電路間傳遞,經(jīng)過(guò)多級放大后,在輸出端成為較大的信號,由于傳感器輸出的有用信號較弱,零點(diǎn)漂移就可能將有用信號淹沒(méi),使電路無(wú)法正常工作。零點(diǎn)漂移可分為基線(xiàn)零點(diǎn)漂移和斜率零點(diǎn)漂移。對于零點(diǎn)漂移的抑制,該系統采用軟硬件相結合的措施。硬件電路方面,采用三運放的差動(dòng)電路輸入,實(shí)現對大內阻的微弱信號采集,并有效抑制了共模信號的引入。一級放大電路之后采用隔直電容,濾除基線(xiàn)零點(diǎn)漂移,防止直流信號過(guò)大,超出A/D轉換的輸入范圍。
有時(shí)硬件的方法是不可能完全滿(mǎn)足系統的要求的,必須結合軟件的方法才能更好地達到系統的要求,也就是現在所說(shuō)的軟件即是虛擬硬件。結合硬件采用軟件的方法簡(jiǎn)單易行,可以很好消除采集數據中的零點(diǎn)漂移,并且其成本比用硬件的方法低,改進(jìn)軟件的算法可以方便實(shí)現對系統的改進(jìn)。對于該系統的零點(diǎn)漂移,采用“計算斜率法”和“正負差值法”相結合的方法可以很有效地消除基線(xiàn)零點(diǎn)漂移和斜率零點(diǎn)漂移對污水流量計生產(chǎn)廠(chǎng)家精度的影響。
圖4為經(jīng)過(guò)信號處理和同步采樣后的信號,同時(shí)存在基線(xiàn)零點(diǎn)漂移和斜率零點(diǎn)漂移。斜率零點(diǎn)漂移則多見(jiàn)于積分系統,隨著(zhù)時(shí)間的推移,積分器的零點(diǎn)可能會(huì )出現隨時(shí)間累加漂移。此外,外界的環(huán)境溫度的變化也是斜率零點(diǎn)漂移產(chǎn)生的重要原因。
鑒于斜率零點(diǎn)漂移產(chǎn)生的機理,可以在標定的時(shí)候確定零點(diǎn)漂移的斜率K。也就是在管道液體靜止不動(dòng)流量為零的時(shí)候對輸出信號進(jìn)行采樣,設從時(shí)間t1進(jìn)行采樣,采樣歷時(shí)Δt,經(jīng)過(guò)一段時(shí)間后又從t2開(kāi)始采樣,歷時(shí)Δt后采樣結束。分別得到兩組離散的信號x1到xn和x1到xn,分別除去最大值、最小值后對剩下(n-2)個(gè)值進(jìn)行平均,得:
那么斜率零點(diǎn)漂移的斜率為:
對于基線(xiàn)零點(diǎn)漂移,“正負差值法”是比較有效便捷的選擇,它不需要直接消除信號中的基線(xiàn)零點(diǎn)漂移,而是通過(guò)算法上去掉基線(xiàn)零點(diǎn)漂移對測量結果的影響。該系統中,激磁信號的頻率為6.25Hz,由于所測量的液體流速不會(huì )有明顯的突變,所以在信號的一個(gè)周期0.16s內,可以采用一個(gè)波峰減去波谷的均值來(lái)表示此時(shí)的流量信號,也即如圖3中|y4-y1|其中y4是從nT+T/4到nT+T/2采樣結果的算術(shù)平均值,y1是從到(n+1)T進(jìn)行采樣結果的算術(shù)平均值。但是由于斜率零點(diǎn)漂移的存在,會(huì )出現如圖3中|y3-y2|的誤差,所以需要利用式(15)的結果對該誤差進(jìn)行修正,修正后的結果也就是此時(shí)管道中液體感應出的電動(dòng)勢為:
對于式(16)結果,去除了工頻干擾、微分干擾、零點(diǎn)漂移的影響,大大提高了污水流量計生產(chǎn)廠(chǎng)家的測量精度。
3.4其他去除干擾的措施
對于由電磁流量傳感器的“變壓器效應”所產(chǎn)生的正交干擾,采用“變送器調零法”來(lái)消除,這個(gè)方法既方便又實(shí)用。
軟件設計方面,采用了數字濾波技術(shù),它能完成模擬濾波不能完成的功能,很容易剔出脈沖干擾,消除數字電路毛刺,提高A/D轉換的抗工頻干擾能力以及輸入微處理器數字的可靠性。此外,還采用了掉電保護技術(shù),軟件指令冗余措施,軟件陷阱抗干擾方法以及看門(mén)狗技術(shù),這些措施的采用有效地排除了智能污水流量計生產(chǎn)廠(chǎng)家微處理器失控。
在PCB電路板制作上,采用數字地與模擬地分開(kāi)走線(xiàn)并加粗,最后用0歐電阻單點(diǎn)相連。數字電源與模擬電源也分開(kāi)供電,合理加裝了去藕電容,并協(xié)調好不同類(lèi)型IC的點(diǎn)評匹配。數字信號和模擬信號分開(kāi)走線(xiàn),有效防止了并行走線(xiàn)產(chǎn)生寄生電容和共生電容。選擇高性能的抗干擾芯片,這是抗干擾技術(shù)重要環(huán)節。
在污水流量計生產(chǎn)廠(chǎng)家的安裝方面,使傳感器的外殼應接地,并且將流量調節閥門(mén)放在流量計的下游,垂直安裝(若水平安裝的流量計應保證上游10倍直徑,下游5倍直徑的直管段),這樣達到整流的目的,從而減小了流速分布不均對測量精度的影響。減短信號傳送電纜,否則由電纜分布電容引起的負載效應就會(huì )增大測量誤差,也增加了信號受到干擾的可能。
4、結束語(yǔ)
智能污水流量計生產(chǎn)廠(chǎng)家多種抗干擾技術(shù)的采用,大大抑制和消除了干擾信號對有用信號的影響,增強了污水流量計生產(chǎn)廠(chǎng)家的抗干擾能力,經(jīng)污水流量計生產(chǎn)廠(chǎng)家制作樣機反復實(shí)驗證明,測量精度可達到0.5%,提高了以往測量的精度和可靠性。
下一篇:關(guān)于dn350輸水管道流量計的運行原理及應用領(lǐng)域解析