印染污水流量計勵磁系統硬件研制
點(diǎn)擊次數:1785 發(fā)布時(shí)間:2021-08-19 07:29:56
1、 高、低壓切換恒流控制電路
高、低壓切換恒流控制電路是勵磁控制系統中的關(guān)鍵部分,由高、低壓電源、能量回饋電路、高低壓切換電路、恒流控制電路、電流旁路電路和遲滯比較電路組成,其電路原理如圖2所示。
高、低壓電源來(lái)自于A(yíng)C-DC模塊。其中,高壓源直接采用AC-DC的80V輸出電源;低壓源則由DC-DC轉換器對AC-DC模塊的24V輸出電源進(jìn)行轉換得到的可調電壓源。電壓大小則以保證勵磁穩態(tài)時(shí),恒流控制電路中的三端穩壓器輸入輸出壓差相對較小為準,以降低電路損耗;能量回饋電路由儲能電容C1、保護二極管D1和能量泄放電阻R1組成。其中,電容C1用于儲存勵磁方向切換時(shí),勵磁線(xiàn)圈中泄放的能量。齊納二極管D1用于防止勵磁線(xiàn)圈中能量泄放時(shí),由于電容C1的充電電壓過(guò)高,而導致的電容擊穿。電阻R1用于在系統斷電不工作時(shí),為電容C1提供能量泄放回路;高低壓切換電路主要由肖特基二極管和達林頓三極管組成高低壓平滑切換電路。當達林頓三極管導通時(shí),將高壓源切換為勵磁工作電源,肖特基二極管反向關(guān)斷,低壓源被切除。而當達林頓三極管關(guān)斷時(shí),肖特基二極管重新正向導通,將低壓源切換為勵磁工作電源。恒流控制電路由三端穩壓芯片、電阻R2與肖特基二極管D3構成。電阻R2用于設置恒流源輸出電流的大小,即勵磁電流的穩態(tài)值;由于勵磁電流達到200mA左右,為防止長(cháng)期勵磁導致電路溫升并影響電路參數,電阻R2選用大功率低溫漂系數的精密電阻;肖特基二極管D3一方面用于防止反向電流損壞三端穩壓器;另一方面用于組成勵磁線(xiàn)圈的能量泄放回路的一部分;電流旁路電路主要由達林頓三極管組成,由遲滯比較電路控制通斷;遲滯比較電路主要由運放和電阻等分立元件搭建而成。比較電路一端輸入為基準Vref,其值取決于勵磁電流的穩態(tài)設定值大小,另一端輸入則為檢流電路檢測得到的勵磁電流信號Cur。
2、 H橋勵磁開(kāi)關(guān)電路與檢流電路
H橋開(kāi)關(guān)電路主要由H橋路及其驅動(dòng)電路組成,用于實(shí)現對勵磁線(xiàn)圈進(jìn)行方波勵磁。原理示意圖如圖3所示。
圖中,L1為勵磁線(xiàn)圈的示意符號。H橋路中,高端橋臂采用PNP型的達林頓三極管,以通過(guò)電流控制其通斷,從而克服因線(xiàn)圈的電感特性導致H橋高端電壓大幅波動(dòng)而較難控制的問(wèn)題。H橋驅動(dòng)電路主要由達林頓陣列管和三極管等組成,為H橋高端橋臂提供電流控制信號,為H橋低端橋臂提供電壓控制信號,且對H橋的控制采用對臂聯(lián)動(dòng)控制方式,即由控制信號CON1控制H橋T1管和T4管的通斷,由控制信號CON2控制H橋T2和T3的通斷。CON1和CON2為正交的PWM波,從而實(shí)現對勵磁線(xiàn)圈的方波勵磁。勵磁系統中檢流電路主要由檢流電阻組成,檢流電阻同樣采用大功率低溫漂的精密電阻以避免長(cháng)期勵磁工作時(shí)電路溫升引起電路參數的較大漂移。另外,檢流電阻取低阻值電阻以降低H橋低端電壓波動(dòng),從而保證H橋低端橋臂可靠通斷。
3 、勵磁時(shí)序產(chǎn)生電路
勵磁時(shí)序產(chǎn)生電路用于產(chǎn)生勵磁控制信號CON1和CON2以控制方波勵磁時(shí)序,其電路原理結構圖如圖4所示。
該電路主要由勵磁時(shí)序發(fā)生單元、三態(tài)緩沖器及隔離光耦組成。勵磁時(shí)序由印染污水流量計系統的控制核心產(chǎn)生。采用DSP的EPWM外設模塊,通過(guò)設定其內部定時(shí)器的工作模式發(fā)出所要求的勵磁頻率的勵磁時(shí)序PWM信號CT_1和CT_2。由于勵磁控制系統中的勵磁工作電源的電壓要比DSP的工作電源電壓高得多,為防止勵磁電路故障對系統控制核心產(chǎn)生致命影響,采用光耦將控制部分與勵磁部分進(jìn)行隔離。另外,由于DSP引腳的驅動(dòng)能力有限,所以在DSP與隔離光耦之間加入三態(tài)緩沖器以驅動(dòng)隔離光耦的輸入級。并且,DSP能夠通過(guò)GPIO口控制三態(tài)緩沖器上的使能引腳來(lái)使能和禁止勵磁,以在檢測到電路故障時(shí)迅速關(guān)斷H橋所有橋臂。該勵磁時(shí)序產(chǎn)生電路通過(guò)軟件編程可產(chǎn)生如圖5所示的單頻矩形波。在實(shí)際應用中,由于組成H橋的達林頓三極管與MOS管導通與關(guān)斷的時(shí)間不一致,易在勵磁方向切換瞬間,產(chǎn)生上下橋臂同時(shí)導通的現象,反映在勵磁電流波形上為一幅值很高的窄脈沖。該脈沖電流不僅容易引起遲滯比較電路的誤輸出,從而導致高低壓切換電路與電流旁路電路的誤動(dòng)作,而且對恒流控制電路產(chǎn)生沖擊,減小三端穩壓芯片的使用壽命,同時(shí)還會(huì )產(chǎn)生EMC電磁干擾,給測量精度帶來(lái)影響。所以實(shí)際應用時(shí),如圖5所示對方波勵磁時(shí)序添加死區,可以明顯減小上述現象。
印染污水流量計勵磁系統硬件研制
印染污水流量計在水務(wù)系統中測量工程中選型與應用
用于控制印染污水流量計使用中低噪音的信號電纜結構設計說(shuō)明
印染污水流量計選型在安裝與使用不當造成的故障分析處理
關(guān)于智能印染污水流量計的工作原理及測量?jì)?yōu)勢
涉及印染污水流量計霍爾效應問(wèn)題易錯點(diǎn)的剖析
如何正確地對印染污水流量計進(jìn)行科學(xué)應用與維護
印染污水流量計,造紙廠(chǎng)污水流量計
印染污水流量計,在線(xiàn)監測污水流量計
印染污水流量計,工業(yè)污水流量計
印染污水流量計,電磁污水流量計
印染污水流量計,dn500污水流量計
印染污水流量計,污水流量計價(jià)格
印染污水流量計,dn600污水流量計
印染污水流量計,污水流量計廠(chǎng)家
印染污水流量計,智能型污水流量計
印染污水流量計,電磁污水流量計廠(chǎng)家
印染污水流量計,污水流量計選型
印染污水流量計,防腐污水流量計
高、低壓切換恒流控制電路是勵磁控制系統中的關(guān)鍵部分,由高、低壓電源、能量回饋電路、高低壓切換電路、恒流控制電路、電流旁路電路和遲滯比較電路組成,其電路原理如圖2所示。
高、低壓電源來(lái)自于A(yíng)C-DC模塊。其中,高壓源直接采用AC-DC的80V輸出電源;低壓源則由DC-DC轉換器對AC-DC模塊的24V輸出電源進(jìn)行轉換得到的可調電壓源。電壓大小則以保證勵磁穩態(tài)時(shí),恒流控制電路中的三端穩壓器輸入輸出壓差相對較小為準,以降低電路損耗;能量回饋電路由儲能電容C1、保護二極管D1和能量泄放電阻R1組成。其中,電容C1用于儲存勵磁方向切換時(shí),勵磁線(xiàn)圈中泄放的能量。齊納二極管D1用于防止勵磁線(xiàn)圈中能量泄放時(shí),由于電容C1的充電電壓過(guò)高,而導致的電容擊穿。電阻R1用于在系統斷電不工作時(shí),為電容C1提供能量泄放回路;高低壓切換電路主要由肖特基二極管和達林頓三極管組成高低壓平滑切換電路。當達林頓三極管導通時(shí),將高壓源切換為勵磁工作電源,肖特基二極管反向關(guān)斷,低壓源被切除。而當達林頓三極管關(guān)斷時(shí),肖特基二極管重新正向導通,將低壓源切換為勵磁工作電源。恒流控制電路由三端穩壓芯片、電阻R2與肖特基二極管D3構成。電阻R2用于設置恒流源輸出電流的大小,即勵磁電流的穩態(tài)值;由于勵磁電流達到200mA左右,為防止長(cháng)期勵磁導致電路溫升并影響電路參數,電阻R2選用大功率低溫漂系數的精密電阻;肖特基二極管D3一方面用于防止反向電流損壞三端穩壓器;另一方面用于組成勵磁線(xiàn)圈的能量泄放回路的一部分;電流旁路電路主要由達林頓三極管組成,由遲滯比較電路控制通斷;遲滯比較電路主要由運放和電阻等分立元件搭建而成。比較電路一端輸入為基準Vref,其值取決于勵磁電流的穩態(tài)設定值大小,另一端輸入則為檢流電路檢測得到的勵磁電流信號Cur。
2、 H橋勵磁開(kāi)關(guān)電路與檢流電路
H橋開(kāi)關(guān)電路主要由H橋路及其驅動(dòng)電路組成,用于實(shí)現對勵磁線(xiàn)圈進(jìn)行方波勵磁。原理示意圖如圖3所示。
圖中,L1為勵磁線(xiàn)圈的示意符號。H橋路中,高端橋臂采用PNP型的達林頓三極管,以通過(guò)電流控制其通斷,從而克服因線(xiàn)圈的電感特性導致H橋高端電壓大幅波動(dòng)而較難控制的問(wèn)題。H橋驅動(dòng)電路主要由達林頓陣列管和三極管等組成,為H橋高端橋臂提供電流控制信號,為H橋低端橋臂提供電壓控制信號,且對H橋的控制采用對臂聯(lián)動(dòng)控制方式,即由控制信號CON1控制H橋T1管和T4管的通斷,由控制信號CON2控制H橋T2和T3的通斷。CON1和CON2為正交的PWM波,從而實(shí)現對勵磁線(xiàn)圈的方波勵磁。勵磁系統中檢流電路主要由檢流電阻組成,檢流電阻同樣采用大功率低溫漂的精密電阻以避免長(cháng)期勵磁工作時(shí)電路溫升引起電路參數的較大漂移。另外,檢流電阻取低阻值電阻以降低H橋低端電壓波動(dòng),從而保證H橋低端橋臂可靠通斷。
3 、勵磁時(shí)序產(chǎn)生電路
勵磁時(shí)序產(chǎn)生電路用于產(chǎn)生勵磁控制信號CON1和CON2以控制方波勵磁時(shí)序,其電路原理結構圖如圖4所示。
該電路主要由勵磁時(shí)序發(fā)生單元、三態(tài)緩沖器及隔離光耦組成。勵磁時(shí)序由印染污水流量計系統的控制核心產(chǎn)生。采用DSP的EPWM外設模塊,通過(guò)設定其內部定時(shí)器的工作模式發(fā)出所要求的勵磁頻率的勵磁時(shí)序PWM信號CT_1和CT_2。由于勵磁控制系統中的勵磁工作電源的電壓要比DSP的工作電源電壓高得多,為防止勵磁電路故障對系統控制核心產(chǎn)生致命影響,采用光耦將控制部分與勵磁部分進(jìn)行隔離。另外,由于DSP引腳的驅動(dòng)能力有限,所以在DSP與隔離光耦之間加入三態(tài)緩沖器以驅動(dòng)隔離光耦的輸入級。并且,DSP能夠通過(guò)GPIO口控制三態(tài)緩沖器上的使能引腳來(lái)使能和禁止勵磁,以在檢測到電路故障時(shí)迅速關(guān)斷H橋所有橋臂。該勵磁時(shí)序產(chǎn)生電路通過(guò)軟件編程可產(chǎn)生如圖5所示的單頻矩形波。在實(shí)際應用中,由于組成H橋的達林頓三極管與MOS管導通與關(guān)斷的時(shí)間不一致,易在勵磁方向切換瞬間,產(chǎn)生上下橋臂同時(shí)導通的現象,反映在勵磁電流波形上為一幅值很高的窄脈沖。該脈沖電流不僅容易引起遲滯比較電路的誤輸出,從而導致高低壓切換電路與電流旁路電路的誤動(dòng)作,而且對恒流控制電路產(chǎn)生沖擊,減小三端穩壓芯片的使用壽命,同時(shí)還會(huì )產(chǎn)生EMC電磁干擾,給測量精度帶來(lái)影響。所以實(shí)際應用時(shí),如圖5所示對方波勵磁時(shí)序添加死區,可以明顯減小上述現象。
下一篇:砂泥漿流量計勵磁控制方案設計