關(guān)于污水流量計抗干擾技術(shù)的研究
點(diǎn)擊次數:2138 發(fā)布時(shí)間:2020-08-10 07:59:53
本文簡(jiǎn)要闡述了幾種污水流量計(EMF)的抗干擾技術(shù)。同時(shí),討論了污水流量計三類(lèi)干擾噪聲產(chǎn)生的物理機理和特征。研究了矩形波勵磁型智能污水流量計的硬件和軟件抗干擾技術(shù),為實(shí)現智能污水流量計的高精度、高可靠性、高抗干擾能力奠定了堅實(shí)的技術(shù)基礎。
1、概 述
污水流量計是基于導電性流體在磁場(chǎng)中運動(dòng)所產(chǎn)生的感應電勢來(lái)推算流體流量的測量?jì)x表,其基本工作原理是電磁感應定律。因此電磁耦合靜電感應是污水流量計干擾噪聲的首要來(lái)源;被測流體介質(zhì)特性產(chǎn)生的電化學(xué)干擾噪聲是污水流量計干擾噪聲的第二來(lái)源;污水流量計供電電源的電壓和頻率波動(dòng)等電源干擾噪聲是污水流量計干擾噪聲的第三來(lái)源。以上三類(lèi)干擾噪聲的來(lái)源、機理、特性不同。對污水流量計的影響方式不同,相應采用的抗干擾措施也不同。本文結合雙頻矩形波勵磁智能污水流量計的研究工作,著(zhù)重就智能污水流量計抗干擾技術(shù)加以探討,提出一些抗干擾的對策,以供智能儀器研究設計參考。
2、污水流量計干擾噪聲的物理機理、特性及其對策
為了對污水流量計抗干擾技術(shù)加以探討,首先必須對污水流量計干擾噪聲產(chǎn)生的物理機理和特性加以分析研究,從而根據各種干擾噪聲的特性采用相應的抗干擾對策,以提高污水流量計抗干擾的能力。
2.1工頻干擾噪聲
工頻干擾噪聲是由電磁流量傳感器勵磁繞組和流體、電極、放大器輸入回路的電磁耦合,其二是污水流量計工作現場(chǎng)的工頻共模干擾,其三是供電電源引入的工頻串模干擾等,其產(chǎn)生的物理機理均是電磁感應原理。首先就電磁流量傳感器勵磁繞組和流體、電極、放大器輸入回路的電磁耦合產(chǎn)生的工頻干擾對污水流量計工作影響最大,而且在不同的勵磁技術(shù)下其表現的形態(tài)、特性不同,因而采取抗干擾措施也不同,電磁流量傳感器原理見(jiàn)圖1(a) 。在工頻正弦波勵磁磁場(chǎng)下,此種電磁耦合工頻干擾噪聲表現形式為正交干擾(見(jiàn)圖1b),又稱(chēng)為變壓器電勢,其特點(diǎn)是干擾噪聲幅值和工頻正弦波勵磁頻率成正比,相位滯后流量信號電勢90°,且幅值較流量信號電勢大幾個(gè)數量級。
對于工頻共模干擾和工頻串模干擾是常見(jiàn)的干擾,主要是由于電磁屏蔽缺陷、分布電容耦合、污水流量計接地不良等原因產(chǎn)生,采用輸入保護技術(shù)、高輸入阻抗、高共模抑制比自舉前置放大器技術(shù)以及重復接地技術(shù),工頻寬脈沖同步采樣技術(shù)等提高抗工頻干擾的能力。
2.2、流體介質(zhì)特性產(chǎn)生的電化學(xué)干擾噪聲
(a)電化學(xué)極化電勢干擾是由于電極感生電動(dòng)勢在兩極極性不同而導致電解質(zhì)在電極表面極化產(chǎn)生。雖然采用正負交變勵磁磁場(chǎng)能顯著(zhù)減弱極化電勢的數量級,但不能根本上完全消除極化電勢干擾。
(b)泥漿干擾是在測量泥漿、纖維漿等液固兩相導電性流體流量時(shí) ,固體顆?;蛘邭馀莶吝^(guò)電極表面時(shí),電極表面的接觸電化學(xué)電勢突然變化,電磁流量傳感器輸出信號出現尖峰脈沖狀干擾噪聲。
(c)流體流動(dòng)噪聲是在測量低導率液體(100vs/cm以下)流體流量時(shí) ,電極的電化學(xué)電勢定期波動(dòng),產(chǎn)生隨流量增加而頻率增加的隨機干擾噪聲,具有類(lèi)似泥漿干擾的1/f頻譜特性,因此提高勵磁頻率有助于降低流體流動(dòng)噪聲的數量級,以提高電磁流量傳感器測量低導電率流體流量的信噪比。
2.3、供電電源性干擾
污水流量計一般都采用工頻交流電源供電,其電源電壓的幅值和頻率的變化都會(huì )給污水流量計帶來(lái)電源性干擾噪聲。對電源電壓的幅值變化,因采用多級集成穩壓,一般而言電源電壓的幅值變化對電磁流量的測量精度影響不大。當電源電壓的頻率波動(dòng)時(shí),雖然其波動(dòng)范圍有限,但對污水流量計測量精度影響較大。
3、智能污水流量計硬件抗干擾技術(shù)
綜合上述污水流量計干擾噪聲產(chǎn)生的物理和特性分析,智能污水流量計分別采用硬件和軟件干擾技術(shù),以提高污水流量計抗干擾能力。
3.1、新型勵磁技術(shù)是提高污水流量計抗干擾能力的重要手段
污水流量計勵磁技術(shù)的發(fā)展,不僅減弱電極極化電勢、泥漿干擾、流動(dòng)噪聲的影響,又能改變工頻干擾的形態(tài),便于同步采樣技術(shù)處理工頻干擾噪聲,以避免工頻干擾的影響。目前電磁流量傳感器采用工頻頻率同步三值低頻矩形勵磁和雙頻矩形波勵磁,從而提高污水流量計整個(gè)抗干擾能力,提高污水流量計的測量精度和可靠性。
3.2、前置放大器的設計是提高抗干擾能力的首要環(huán)節
電磁流量傳感器輸出流信號十分微弱,內阻抗較高,因此高輸入阻抗、低漂移、低噪聲、高CRMM前置放大器才能滿(mǎn)足抗同相共模干擾的要求。前置放大器采用JFET高輸入阻抗電壓緩沖器,低漂移低噪聲減法器,精密電阻精心匹配組成儀用放大器,并采用輸入保護技術(shù),共模電壓自舉技術(shù)和接地技術(shù)大大提高抗共模干擾的能力,抑制零點(diǎn)漂移的影響。
3.3、同步采樣的頻率補償技術(shù)
同步采樣和工頻電源頻率監視補償技術(shù),是提高抗流量信號電勢中混入工頻干擾和工頻電源頻率波動(dòng)產(chǎn)生工頻干擾能力的有效方法。同步采樣技術(shù),其采樣脈寬為工頻周期的整數倍,使流量信號電勢中工頻干擾平均值等于零,以消除工頻干擾的影響;工頻電源的頻率波動(dòng)補償是保證頻率的動(dòng)態(tài)波動(dòng)中,勵磁電源和采樣脈沖得以同步調整,真正實(shí)現同步采樣技術(shù)和同步勵磁技術(shù),同步AD轉換,以降低工頻干擾的影響。
3.4、采用新型HCMOS系列芯片技術(shù)
采用74HC系列芯片技術(shù)較采用74LS系列芯片其低噪聲容限提高2.4 倍,高燥聲容限提高,2.1倍,智能污水流量計整個(gè)硬件采用74HC系列芯片,不僅降低整個(gè)功耗,而且提高元器件本身抗干擾能力 ,為污水流量計小型輕量一體化奠定了基礎。
3.5、微處理器系統電源電壓監視技術(shù)
智能污水流量計中微處理器系統當電源瞬態(tài)欠壓,勵磁開(kāi)關(guān)脈沖動(dòng)作都會(huì )造成微處理器誤動(dòng)作,數據丟失等現象,因此必須采用可靠的復位電路和電源電壓監視技術(shù)。最簡(jiǎn)單實(shí)用的方法是采用低成本電源配合高靈敏度的電源電壓監視器,提高微處理器系統和抗干擾能力。如圖2所示微處理器電壓監視器,其采用TL7705CP 電源電壓監視器芯片,具有電源加電、電源瞬時(shí)欠壓均能產(chǎn)生可靠的復位信號。
4、智能污水流量計軟件抗干擾技術(shù)
智能污水流量計固化在EPROM中的軟件配合硬件除完成智能污水流量計的正常功能外,必須具備較強的抗干擾能力和容錯能力,組成完善的應用程序。
4.1、數字濾波技術(shù)
數字濾波技術(shù)是智能儀器中最常采用的技術(shù),能夠完成模擬濾波器不能完成的功能,很容易解決脈沖干擾剔除、數字電路毛刺干擾消除、APD 轉換器的抗工頻能力以及輸入微處理器數字的可靠性問(wèn)題。
4.2、程控放大器技術(shù)
程控放大器技術(shù)即解決污水流量計量程自動(dòng)轉換問(wèn)題,同時(shí)利用增益控制方法有效削弱微分干擾峰值使放大器過(guò)載的問(wèn)題,便于流量信號電勢處理,提高抗微分干擾的能力。
4.3、微處理器硬件故障自診斷技術(shù)
微處理器硬件故障自診斷技術(shù)是采用軟件容錯設計,極大地提高硬件系統的可靠性,從而提高整個(gè)智能污水流量計的抗干擾能力。具體包括CPU自診斷,定時(shí)器診斷,中斷功能診斷,RAM診斷,A/D通道診斷和校正,D/A通道診斷,數字I/O口通道的診斷等部分 ,涉及到智能污水流量計的關(guān)鍵部件。
4.4、微處理器抗干擾技術(shù)
上述各種抗干擾措施是解決輸入、輸出通道中的各種干擾問(wèn)題,當干擾噪聲沒(méi)有作用到微處理器本身時(shí),微處理器仍然正確無(wú)誤地執行各種抗干擾軟件,消除或者削弱干擾噪聲對污水流量計輸入輸出通路的影響,當干擾噪聲通過(guò)三總線(xiàn)等作用到微處理器本身,CPU將不能按正常狀態(tài)執行程序,導致智能污水流量計整個(gè)工作混亂,為了提高微處理器自身的抗干擾能力采用硬件和軟件相配合的多種抗干擾措施。多種復位方式解決失控的CPU最簡(jiǎn)單的方法,掉電保護技術(shù),軟件指令冗余措施,軟件陷阱抗干擾方法也是排除智能污水流量計微處理器失控的有效方法。
4.5、程序運行監視系統(WATCHDOG)
智能污水流量計采用程序運行監視系統以監視微處理器執行應用程序的狀況,當程序正彈到一個(gè)臨時(shí)構成的死循環(huán)中時(shí)看門(mén)狗能及時(shí)發(fā)并強迫系統復位,擺脫死循環(huán)狀態(tài),圖3所示是由硬件和軟件配合構成的程序運行監視器。
5、結束語(yǔ)
智能污水流量計多種抗干擾技術(shù)的采用,使污水流量計抗干擾能力增強,精度和可靠性提高,不僅實(shí)現了污水流量計小型輕量一體化智能化,而且推動(dòng)了污水流量計的廣泛應用,開(kāi)拓了污水流量計的潛在市場(chǎng)。
關(guān)于污水流量計的安裝規范與安裝圖
關(guān)于污水流量計的工作原理及組成部分介紹
污水流量計的適用范圍特點(diǎn)及如何選型
污水流量計公稱(chēng)通徑與流量范圍對照圖
污水流量計電極與襯里材料選型對照表
污水流量計的外形和安裝尺寸圖示與對照表
污水流量計的故障檢查與分析匯總
分體式與一體式污水流量計如何接線(xiàn)圖解
污水流量計顯示波動(dòng)大的原因分析
關(guān)于城市生活污水與工業(yè)廢水的流量設計分析
用于測量各類(lèi)污水處理排水流量計種類(lèi)以及選型
智能污水處理排水流量計優(yōu)缺點(diǎn)及產(chǎn)生誤差的原因分析
智能污水管道排水計量表好與壞有哪7個(gè)重要的檢查要領(lǐng)
影響dn250污水流量計精度的因素有哪三個(gè)方面
明渠分體式污水流量計在供水流量測量中的縮頸變徑運用分析
dn25污水管道流量計在自控儀表系統中的防干擾策略
如何測量dn25污水流量計電極與所測液體介質(zhì)接觸電阻值
影響漿液型dn25污水流量計廠(chǎng)家測量因素及解決辦法
dn25污水專(zhuān)用流量計的特點(diǎn)及與自來(lái)水電磁水表的區別
dn250污水流量計的結構原理與安裝注意事項及運行維護
一體型管道污水流量計在熱鉀堿溶液測量中的安裝與使用
造紙廠(chǎng)污水流量計的內襯如何選擇及對于內襯的加工工藝介紹
造紙廠(chǎng)污水排放計量表廠(chǎng)家指導分體式傳感器檢定校準方法
造紙廠(chǎng)污水排放計量表監測數據有效性判別技術(shù)研究
關(guān)于國產(chǎn)紡織污水流量計價(jià)格產(chǎn)業(yè)如何提升研發(fā)短板的思路
紡織污水流量計價(jià)格在安裝與使用過(guò)程中不當操作導致的
正確處理紡織污水流量計測量過(guò)程中液體均勻混合問(wèn)
dn65污水流量計勵磁系統硬件研制
智能型電磁污水流量計和超聲流量計在污水處理廠(chǎng)的應用
關(guān)于幾種常用的生活污水流量計價(jià)格的性能比較
1、概 述
污水流量計是基于導電性流體在磁場(chǎng)中運動(dòng)所產(chǎn)生的感應電勢來(lái)推算流體流量的測量?jì)x表,其基本工作原理是電磁感應定律。因此電磁耦合靜電感應是污水流量計干擾噪聲的首要來(lái)源;被測流體介質(zhì)特性產(chǎn)生的電化學(xué)干擾噪聲是污水流量計干擾噪聲的第二來(lái)源;污水流量計供電電源的電壓和頻率波動(dòng)等電源干擾噪聲是污水流量計干擾噪聲的第三來(lái)源。以上三類(lèi)干擾噪聲的來(lái)源、機理、特性不同。對污水流量計的影響方式不同,相應采用的抗干擾措施也不同。本文結合雙頻矩形波勵磁智能污水流量計的研究工作,著(zhù)重就智能污水流量計抗干擾技術(shù)加以探討,提出一些抗干擾的對策,以供智能儀器研究設計參考。
2、污水流量計干擾噪聲的物理機理、特性及其對策
為了對污水流量計抗干擾技術(shù)加以探討,首先必須對污水流量計干擾噪聲產(chǎn)生的物理機理和特性加以分析研究,從而根據各種干擾噪聲的特性采用相應的抗干擾對策,以提高污水流量計抗干擾的能力。
2.1工頻干擾噪聲
工頻干擾噪聲是由電磁流量傳感器勵磁繞組和流體、電極、放大器輸入回路的電磁耦合,其二是污水流量計工作現場(chǎng)的工頻共模干擾,其三是供電電源引入的工頻串模干擾等,其產(chǎn)生的物理機理均是電磁感應原理。首先就電磁流量傳感器勵磁繞組和流體、電極、放大器輸入回路的電磁耦合產(chǎn)生的工頻干擾對污水流量計工作影響最大,而且在不同的勵磁技術(shù)下其表現的形態(tài)、特性不同,因而采取抗干擾措施也不同,電磁流量傳感器原理見(jiàn)圖1(a) 。在工頻正弦波勵磁磁場(chǎng)下,此種電磁耦合工頻干擾噪聲表現形式為正交干擾(見(jiàn)圖1b),又稱(chēng)為變壓器電勢,其特點(diǎn)是干擾噪聲幅值和工頻正弦波勵磁頻率成正比,相位滯后流量信號電勢90°,且幅值較流量信號電勢大幾個(gè)數量級。
對于工頻共模干擾和工頻串模干擾是常見(jiàn)的干擾,主要是由于電磁屏蔽缺陷、分布電容耦合、污水流量計接地不良等原因產(chǎn)生,采用輸入保護技術(shù)、高輸入阻抗、高共模抑制比自舉前置放大器技術(shù)以及重復接地技術(shù),工頻寬脈沖同步采樣技術(shù)等提高抗工頻干擾的能力。
2.2、流體介質(zhì)特性產(chǎn)生的電化學(xué)干擾噪聲
(a)電化學(xué)極化電勢干擾是由于電極感生電動(dòng)勢在兩極極性不同而導致電解質(zhì)在電極表面極化產(chǎn)生。雖然采用正負交變勵磁磁場(chǎng)能顯著(zhù)減弱極化電勢的數量級,但不能根本上完全消除極化電勢干擾。
(b)泥漿干擾是在測量泥漿、纖維漿等液固兩相導電性流體流量時(shí) ,固體顆?;蛘邭馀莶吝^(guò)電極表面時(shí),電極表面的接觸電化學(xué)電勢突然變化,電磁流量傳感器輸出信號出現尖峰脈沖狀干擾噪聲。
(c)流體流動(dòng)噪聲是在測量低導率液體(100vs/cm以下)流體流量時(shí) ,電極的電化學(xué)電勢定期波動(dòng),產(chǎn)生隨流量增加而頻率增加的隨機干擾噪聲,具有類(lèi)似泥漿干擾的1/f頻譜特性,因此提高勵磁頻率有助于降低流體流動(dòng)噪聲的數量級,以提高電磁流量傳感器測量低導電率流體流量的信噪比。
2.3、供電電源性干擾
污水流量計一般都采用工頻交流電源供電,其電源電壓的幅值和頻率的變化都會(huì )給污水流量計帶來(lái)電源性干擾噪聲。對電源電壓的幅值變化,因采用多級集成穩壓,一般而言電源電壓的幅值變化對電磁流量的測量精度影響不大。當電源電壓的頻率波動(dòng)時(shí),雖然其波動(dòng)范圍有限,但對污水流量計測量精度影響較大。
3、智能污水流量計硬件抗干擾技術(shù)
綜合上述污水流量計干擾噪聲產(chǎn)生的物理和特性分析,智能污水流量計分別采用硬件和軟件干擾技術(shù),以提高污水流量計抗干擾能力。
3.1、新型勵磁技術(shù)是提高污水流量計抗干擾能力的重要手段
污水流量計勵磁技術(shù)的發(fā)展,不僅減弱電極極化電勢、泥漿干擾、流動(dòng)噪聲的影響,又能改變工頻干擾的形態(tài),便于同步采樣技術(shù)處理工頻干擾噪聲,以避免工頻干擾的影響。目前電磁流量傳感器采用工頻頻率同步三值低頻矩形勵磁和雙頻矩形波勵磁,從而提高污水流量計整個(gè)抗干擾能力,提高污水流量計的測量精度和可靠性。
3.2、前置放大器的設計是提高抗干擾能力的首要環(huán)節
電磁流量傳感器輸出流信號十分微弱,內阻抗較高,因此高輸入阻抗、低漂移、低噪聲、高CRMM前置放大器才能滿(mǎn)足抗同相共模干擾的要求。前置放大器采用JFET高輸入阻抗電壓緩沖器,低漂移低噪聲減法器,精密電阻精心匹配組成儀用放大器,并采用輸入保護技術(shù),共模電壓自舉技術(shù)和接地技術(shù)大大提高抗共模干擾的能力,抑制零點(diǎn)漂移的影響。
3.3、同步采樣的頻率補償技術(shù)
同步采樣和工頻電源頻率監視補償技術(shù),是提高抗流量信號電勢中混入工頻干擾和工頻電源頻率波動(dòng)產(chǎn)生工頻干擾能力的有效方法。同步采樣技術(shù),其采樣脈寬為工頻周期的整數倍,使流量信號電勢中工頻干擾平均值等于零,以消除工頻干擾的影響;工頻電源的頻率波動(dòng)補償是保證頻率的動(dòng)態(tài)波動(dòng)中,勵磁電源和采樣脈沖得以同步調整,真正實(shí)現同步采樣技術(shù)和同步勵磁技術(shù),同步AD轉換,以降低工頻干擾的影響。
3.4、采用新型HCMOS系列芯片技術(shù)
采用74HC系列芯片技術(shù)較采用74LS系列芯片其低噪聲容限提高2.4 倍,高燥聲容限提高,2.1倍,智能污水流量計整個(gè)硬件采用74HC系列芯片,不僅降低整個(gè)功耗,而且提高元器件本身抗干擾能力 ,為污水流量計小型輕量一體化奠定了基礎。
3.5、微處理器系統電源電壓監視技術(shù)
智能污水流量計中微處理器系統當電源瞬態(tài)欠壓,勵磁開(kāi)關(guān)脈沖動(dòng)作都會(huì )造成微處理器誤動(dòng)作,數據丟失等現象,因此必須采用可靠的復位電路和電源電壓監視技術(shù)。最簡(jiǎn)單實(shí)用的方法是采用低成本電源配合高靈敏度的電源電壓監視器,提高微處理器系統和抗干擾能力。如圖2所示微處理器電壓監視器,其采用TL7705CP 電源電壓監視器芯片,具有電源加電、電源瞬時(shí)欠壓均能產(chǎn)生可靠的復位信號。
4、智能污水流量計軟件抗干擾技術(shù)
智能污水流量計固化在EPROM中的軟件配合硬件除完成智能污水流量計的正常功能外,必須具備較強的抗干擾能力和容錯能力,組成完善的應用程序。
4.1、數字濾波技術(shù)
數字濾波技術(shù)是智能儀器中最常采用的技術(shù),能夠完成模擬濾波器不能完成的功能,很容易解決脈沖干擾剔除、數字電路毛刺干擾消除、APD 轉換器的抗工頻能力以及輸入微處理器數字的可靠性問(wèn)題。
4.2、程控放大器技術(shù)
程控放大器技術(shù)即解決污水流量計量程自動(dòng)轉換問(wèn)題,同時(shí)利用增益控制方法有效削弱微分干擾峰值使放大器過(guò)載的問(wèn)題,便于流量信號電勢處理,提高抗微分干擾的能力。
4.3、微處理器硬件故障自診斷技術(shù)
微處理器硬件故障自診斷技術(shù)是采用軟件容錯設計,極大地提高硬件系統的可靠性,從而提高整個(gè)智能污水流量計的抗干擾能力。具體包括CPU自診斷,定時(shí)器診斷,中斷功能診斷,RAM診斷,A/D通道診斷和校正,D/A通道診斷,數字I/O口通道的診斷等部分 ,涉及到智能污水流量計的關(guān)鍵部件。
4.4、微處理器抗干擾技術(shù)
上述各種抗干擾措施是解決輸入、輸出通道中的各種干擾問(wèn)題,當干擾噪聲沒(méi)有作用到微處理器本身時(shí),微處理器仍然正確無(wú)誤地執行各種抗干擾軟件,消除或者削弱干擾噪聲對污水流量計輸入輸出通路的影響,當干擾噪聲通過(guò)三總線(xiàn)等作用到微處理器本身,CPU將不能按正常狀態(tài)執行程序,導致智能污水流量計整個(gè)工作混亂,為了提高微處理器自身的抗干擾能力采用硬件和軟件相配合的多種抗干擾措施。多種復位方式解決失控的CPU最簡(jiǎn)單的方法,掉電保護技術(shù),軟件指令冗余措施,軟件陷阱抗干擾方法也是排除智能污水流量計微處理器失控的有效方法。
4.5、程序運行監視系統(WATCHDOG)
智能污水流量計采用程序運行監視系統以監視微處理器執行應用程序的狀況,當程序正彈到一個(gè)臨時(shí)構成的死循環(huán)中時(shí)看門(mén)狗能及時(shí)發(fā)并強迫系統復位,擺脫死循環(huán)狀態(tài),圖3所示是由硬件和軟件配合構成的程序運行監視器。
5、結束語(yǔ)
智能污水流量計多種抗干擾技術(shù)的采用,使污水流量計抗干擾能力增強,精度和可靠性提高,不僅實(shí)現了污水流量計小型輕量一體化智能化,而且推動(dòng)了污水流量計的廣泛應用,開(kāi)拓了污水流量計的潛在市場(chǎng)。
上一篇:提供污水流量計測量準確性的方法